Periodic Solutions for Nonlinear Neutral Delay Integro-differential Equations

نویسنده

  • AZZEDDINE BELLOUR
چکیده

In this article, we consider a model for the spread of certain infectious disease governed by a delay integro-differential equation. We obtain the existence and the uniqueness of a positive periodic solution, by using Perov’s fixed point theorem in generalized metric spaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost periodic solutions for a nonlinear integro-differential equation with neutral delay

This paper is concerned with the existence of almost periodic and pseudo almost solutions for a nonlinear integro-differential equation with neutral delay, which arise in epidemic problems. By using almost periodic functions theory and fixed point theory, we obtain the results. Two examples are given to illustrate our results. In addition, an application to nonautonomous differential equations ...

متن کامل

Existence of periodic solutions to integro-differential equations of neutral type via limiting equations

In this paper, we present some results on the existence of periodic solutions to Volterra integro-differential equations of neutral type. The main idea is to show the convergence of an equibounded sequence of periodic solutions of certain limiting equations which are of finite delay. This makes it possible to apply the existing Liapunov-Razumikhin technique for neutral equations with finite del...

متن کامل

Bounded and Periodic Solutions of Nonlinear Integro-differential Equations with Infinite Delay

By using the concept of integrable dichotomy, the fixed point theory, functional analysis methods and some new technique of analysis, we obtain new criteria for the existence and uniqueness of bounded and periodic solutions of general and periodic systems of nonlinear integro-differential equations with infinite delay.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015